Interpretation of Alcohol Results

Content	Page Number	
Ethanol, Proof and Standard Drinks	2	
Common Conversion Units	3	
Impairing Effects of Ethanol	4	
Absorption, Distribution and Elimination	9	
Widmark's Equation and Calculations	10	
References	15	
Appendices	16-19	
Revision History	20	

Interpretation of Alcohol Results

Issued: 05/11/2016 Version: IAR 2016 R0 Effective: 05/16/2016 Status: Archived

<u>Introduction</u>

The intent of this manual is to describe how forensic scientists within the forensic alcohol discipline at the Scientific Crime Detection Laboratory will interpret the results of blood and breath alcohol measurements. It also serves as a summary to the legal community as to what to expect when a forensic scientist's testimony is to include alcohol interpretation.

Ethanol

The chemical name for the alcohol that is commonly consumed is ethanol (or ethyl alcohol). In this document, alcohol and ethanol are used interchangeably. Ethanol is a small, water soluble molecule that is readily absorbed and distributed by the blood throughout all of the water-containing components of the body.

Alcohol Proof

The concentration of an alcoholic beverage is commonly listed in the units of proof. The concentration of alcohol in percent by volume is one half the proof.

$$80 \text{ Proof} = 40 \% (v/v)$$

The common abbreviations for alcohol percent by volume are abv and % (v/v). The volume of pure ethanol can be converted to its mass by using ethanol's density.

1 mL ethanol = 0.789 grams ethanol

Standard Drinks

The term "standard drink" applies to drinks of "standard" alcoholic strength. In the United States, a standard drink is officially defined as containing the equivalent of 14 grams of ethanol. The resulting concentration of ethanol (% v/v) when 14 grams of pure ethanol is diluted to a given volume can be calculated as follows:

Concentration in abv = $(100 \times 14 \text{ g}) / (\text{volume of drink in oz } \times 29.6 \text{ mL/oz } \times 0.789 \text{ g/mL})$

This gives the following drink concentrations for a United States standard alcoholic drink containing 14 grams of alcohol:

12 ounces of 5% (v/v) beer

5 ounces of 12% (v/v) wine

1.5 ounces of 40% (v/v) spirits

Interpretation of Alcohol Results

Issued: 05/11/2016 Version: IAR 2016 R0 Effective: 05/16/2016 Status: Archived

Common unit conversions

The Crime Laboratory reports blood alcohol concentrations in units of "grams per 100 milliliters" abbreviated as g/100mL. Other laboratories may use the units of "grams per deciliter" abbreviated g/dL. Because one deciliter equals 100 milliliters, these units are equivalent.

0.080 g/100mL = 0.080 g/dL

Alcohol concentrations reported in medical results are commonly in units of "milligrams per deciliter" abbreviated mg/dL. Because one gram equals 1000 milligrams, mg/dL can be converted to g/dL by dividing by 1000.

80 mg/dL = 0.080 g/dL = 0.080 g/100mL

Converting Serum and Plasma Results to Whole Blood

Although hospital results frequently report alcohol concentrations as being from blood, serum or plasma is often the sample analyzed. Serum is the liquid that remains when blood is collected without an anticoagulant and allowed to clot. Plasma is the liquid separated from whole blood and treated with an anticoagulant when the blood cells are removed.

Ethanol distributes throughout all of the water-containing components of the body. Since serum or plasma represents the water portion of whole blood, it will have a higher alcohol content than the whole blood from which it came. The average ratio of serum and plasma alcohol content to whole blood alcohol content is approximately 1.14:1 with a range of 1.04:1 to 1.26:1.² The whole blood concentration can be calculated from the serum or plasma alcohol concentration result by using the average ratio.

Whole blood alcohol content = Serum or Plasma Alcohol Content / 1.14

Breath and Blood Alcohol

Breath alcohol instruments indirectly estimate a person's blood alcohol concentration using a calibration factor called the blood/breath ratio. This ratio describes how the concentration of alcohol in someone's venous blood relates to the concentration of alcohol in their deep lung air. Breath instruments in the United States assume a blood/breath ratio of 2100:1. Studies have shown that the blood/breath ratio is less than 2000:1 during the absorptive phase, increasing to about 2100:1 by 90 minutes post -dosing, and further increasing to 2300:1 or 2400:1 later in the post-absorptive phase.³ Because of the variability in an individual's blood/breath ratio, a breath alcohol concentration result should not be converted to a blood alcohol concentration. Despite this variability in the blood/breath ratio, both breath and blood alcohol testing are valid when determining someone's current alcohol content.

Interpretation of Alcohol Results

Issued: 05/11/2016 Version: IAR 2016 R0 Effective: 05/16/2016 Status: Archived

The Alaska Administrative Code lists the legal limit of 0.08 in both blood (g/100mL) and breath (g/210L) units making any conversion between the two unnecessary.⁴

Impairing Effects of Ethanol

Ethanol is a central nervous system depressant. The magnitude of its depressant effects is dependent on the dose consumed. The depressant effects of alcohol cause an increase in reaction time (decrease in information processing rate), a decrease in judgment, and a decrease in coordination.

Outward signs of intoxication can vary based on the individual. Figure 1 outlines some of the clinical signs and symptoms of ethanol intoxication and the blood alcohol ranges at which they may be observed. ⁵

Interpretation of Alcohol Results

Issued: 05/11/2016 Version: IAR 2016 R0 Effective: 05/16/2016 Status: Archived

STAGES OF ACUTE ALCOHOLIC INFLUENCE/INTOXICATION

Influence/effects usually not apparent or obvious Behavior nearly normal by ordinary observation Impairment detectable by special tests	BLOOD- ALCOHOL CONCENTRATION grams/100 mL	STAGE OF ALCOHOLIC INFLUENCE	CLINICAL SIGNS/SYMPTOMS
Increased self-confidence; decreased inhibitions Diminished attention, judgment and control Some sensory-motor impairment Slowed information processing Loss of efficiency in critical performance tests Emotional instability; loss of critical judgment Impairment of perception, memory and comprehension Decreased sensitory response; increased reaction time Reduced visual acuity & peripheral vision; and slow glare recovery Sensory-motor incoordination; impaired balance; slurred speech; vomiting; drowsiness Disorientation, mental confusion; vertigo; dysphoria Exaggerated emotional states (fear, rage, grief, etc) Disturbances of vision (diplopia, etc.) and of perception of color, form, motion, dimensions Increased pain threshold Increased muscular incoordination; staggering gait; ataxia Apathy, lethargy General inertia; approaching loss of motor functions Markedly decreased response to stimuli Marked muscular incoordination; inability to stand or walk Vomiting; incontinence of urine and feces Impaired consciousness; sleep or stupor Complete unconsciousness; sleep or stupor Complete unconsciousness; coma; anesthesia Depressed or abolished reflexes Subnormal temperature Subnormal temperat	0.01-0.05	Subclinical	Behavior nearly normal by ordinary observation Impairment detectable by special tests
Impairment of perception, memory and comprehension	0.03-0.12	Euphoria	Increased self-confidence; decreased inhibitions Diminished attention, judgment and control Some sensory-motor impairment Slowed information processing Loss of efficiency in critical performance tests
Confusion Exaggerated emotional states (fear, rage, grief, etc) Disturbances of vision (diplopia, etc.) and of perception of color, form, motion, dimensions Increased pain threshold Increased muscular incoordination; staggering gait; ataxia Apathy, lethargy General inertia; approaching loss of motor functions Markedly decreased response to stimuli Marked muscular incoordination; inability to stand or walk Vomiting; incontinence of urine and feces Impaired consciousness; sleep or stupor Complete unconsciousness; coma; anesthesia Depressed or abolished reflexes Subnormal temperature	0.09-0.25	Excitement	Impairment of perception, memory and comprehension Decreased sensitory response; increased reaction time Reduced visual acuity & peripheral vision; and slow glare recovery Sensory-motor incoordination; impaired balance;
Markedly decreased response to stimuli Marked muscular incoordination; inability to stand or walk Vomiting; incontinence of urine and feces Impaired consciousness; sleep or stupor Complete unconsciousness; coma; anesthesia Depressed or abolished reflexes Subnormal temperature	0.18-0.30	Confusion	Exaggerated emotional states (fear, rage, grief, etc) Disturbances of vision (diplopia, etc.) and of perception of color, form, motion, dimensions Increased pain threshold Increased muscular incoordination; staggering gait; ataxia Apathy, lethargy
0.35-0.50 Depressed or abolished reflexes Subnormal temperature	0.25-0.40	Stupor	Markedly decreased response to stimuli Marked muscular incoordination; inability to stand or walk Vomiting; incontinence of urine and feces
Possible death 0.45+ Death Death rom respiratory arrest			Depressed or abolished reflexes Subnormal temperature Impairment of circulation and respiration Possible death

KURT M. DUBOWSKI, Ph.D., D.A.B.C.C., D.A.B.F.T.

The University of Oklahoma Department of Medicine Oklahoma City, Oklahoma

Copyright[®] 2006 by Kurt M. Dubowski, Ph.D. All Rights Reserved

Figure 1: Ethanol Impairment Signs and Symptoms Chart

Interpretation of Alcohol Results

Issued: 05/11/2016 Version: IAR 2016 R0 Effective: 05/16/2016 Status: Archived

Studies have compared the relative vehicle crash risk of people at a specific alcohol level to people with no alcohol in their system.^{6, 7} Relative crash risk asks the question, "What are the odds of a person getting in an accident at a particular BAC compared to the odds of a person getting in an accident with no alcohol in their system?" Mathematically, this is expressed as:

Relative Crash Risk =
$$\frac{\left(\frac{N_{crash}}{N_{control}}\right)_{BAC=x}}{\left(\frac{N_{crash}}{N_{control}}\right)_{BAC=0}}$$

The largest of these studies used crash data from Grand Rapids, MI and more recently in Long Beach, CA and Fort Lauderdale, FL.

As illustrated in Figure 2, results confirm a notable dose-response relationship beginning at 0.04 g/100mL and increasing exponentially at greater than 0.10 g/100mL.⁶

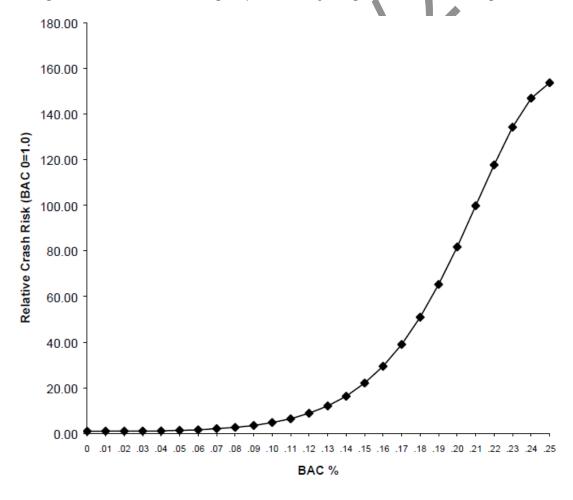


Figure 2: Relative crash risk at varying BAC %

Interpretation of Alcohol Results

Figure 3 shows these results in tabulated form⁷.

Table ES-1. Relative Risk Models

	Table I	28-1. Kelative Ki Relati	ve Risk	
BAC	No Covariates	Non-reactive Demographic Covariates	Final Adjusted Estimate	Grand Rapids*
0.00	1.00	1.00	1.00	1.00
.01	.91	.94	1.03	.92
.02	.87	.92	1.03	.96
.03	.87	.94	1.06	.80
.04	.92	1.00	1.18	1.08
.05	1.00	1.10	1.38	1.21
.06	1.13	1.25	1.63	1.41
.07	1.32	1.46	2.09	1.52
.08	1.57	1.74	2.69	1.88
.09	1.92	2.12	3.54	1.95
.10	2.37	2.62	4.79	5.93
.11	2.98	3.28	6.41	3.93
.12	3.77	4.14	8.90	4.94
.13	4.78	5.23	12.06	4.54
.14	6.05	6.60	16.36	10.44
.15	7.61	8.31	22.10	10.44
.16	9.48	10.35	29.48	
.17	11.64	12.74	39.05	
.18	14.00	15.43	50.99	
.19	16.45	18.31	65.32	
.20	18.78	21.20	81.79	21.38
.21	20.74	23.85	99.78	21.30
.22	22.07	25.99	117.72	
.23	22.51	27.30	134.26	
.24	21.92	27.55	146.90	
.25+	20.29	26.60	153.68	

^{*}From reporting of Grand Rapids Study data in Table 25 (a) of Allsop (1966).

Figure 3: Tabulated form of relative crash risk results

Interpretation of Alcohol Results

Issued: 05/11/2016 Version: IAR 2016 R0 Effective: 05/16/2016 Status: Archived

The authors of the Grand Rapids study concluded that at above a 0.08% blood alcohol level, factors other than alcohol became less and less significant and eventually seemed to disappear. This is compelling evidence that alcohol is a major factor in traffic crash causation. In addition to these studies, the Committee on Alcohol and Other Drugs of the National Safety Council have concluded that all individuals are impaired with respect to operating a motor vehicle at concentrations of 0.08 and above, while some individuals are impaired with respect to driving at concentrations below 0.08.

General Alcohol Concentration Curve

When a person consumes alcohol, the time course of ethanol concentration in the blood can be divided into three phases: absorptive, peak, and post-absorptive. These phases are illustrated in Figure 4.²

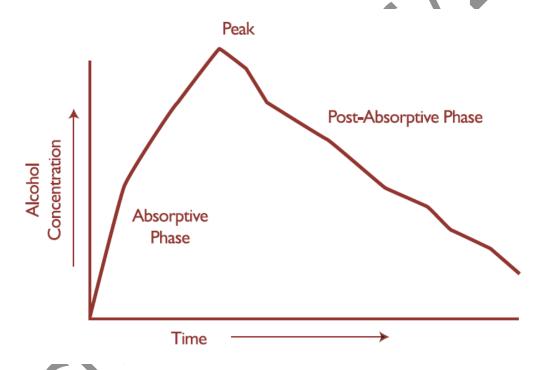


Figure 4: General alcohol concentration curve

As soon as alcohol is absorbed into the body, the body begins to eliminate it. During the absorptive phase, alcohol concentration is increasing at a faster rate than it is being eliminated, at the peak, absorption and elimination rates are equal, and after absorption of alcohol is complete, alcohol concentration will decrease until it is completely eliminated.

Interpretation of Alcohol Results

Issued: 05/11/2016 Version: IAR 2016 R0 Effective: 05/16/2016 Status: Archived

Absorption

When alcohol is ingested, about 20-25% of the dose is absorbed through the stomach lining and the remaining 75-80% is absorbed when it leaves the stomach and enters the small intestine.² The most important factor affecting the rate of absorption is the presence of food in the stomach concurrent with alcohol. **Peak concentrations are generally attained within 30 to 60 minutes of the cessation of drinking.**² When alcohol is consumed successively over time, as in a social drinking situation, peak concentrations are generally attained within 30 minutes of the last drink and may even be attained before the last drink is finished.²

Distribution

Because alcohol is completely water soluble, the alcohol concentration in the body after absorbing a given dose is proportional to a person's total water content. **The more water a person has in their body, the less concentrated a given dose of alcohol will be after it is absorbed and distributed.** About 68% of an average male's body weight is due to body water, while the percentage is 55% for average females.²

Elimination

At blood alcohol concentrations above 0.02 g/100mL, the metabolic capacity of the primary enzyme responsible for ethanol elimination (hepatic alcohol dehydrogenase) is saturated.³ This means that the rate of ethanol elimination is independent of the remaining ethanol concentration in the blood (zero-order kinetics). The majority of the human population eliminates alcohol at a rate between 0.010 g/100mL/hr and 0.025 g/100mL/hr with an average elimination rate of 0.017 g/100mL/hr.³ Factors that may have an effect on an individual's elimination rate include how well-nourished the person is and whether continuous drinking has occurred over a period of several days.³ An individual's elimination rate will vary and, rather than speculating over what their specific elimination rate was during the time of interest, it is more practical to use the elimination range and average listed above.³

Interpretation of Alcohol Results

Issued: 05/11/2016 Version: IAR 2016 R0 Effective: 05/16/2016 Status: Archived

The Widmark Calculation and Extrapolations

The calculations described in this section should be viewed as a general guideline or rough estimate. While based on accepted scientific principles and peer-reviewed data, calculating an alcohol concentration is not as accurate or reliable as a measured breath or blood alcohol concentration.

Widmark Formula

The Widmark Formula is used to answer these questions:

What is the minimum number of drinks needed to reach a certain level?

What would their maximum possible alcohol content be given a certain dose of alcohol?

The Widmark formula can be used to calculate a person's **maximum alcohol content** for a given gender, body weight, and dose of alcohol. It assumes instantaneous and complete absorption of the entire alcohol dose into a person's systemic blood. Conversely, the formula can be used to calculate the **minimum amount of alcohol that must be consumed** to achieve a given alcohol content.

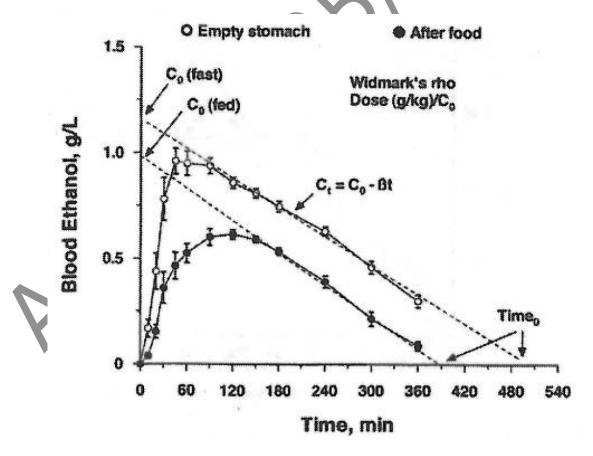


Figure 5: Widmark concept and the effect of food on bioavailability Page **10** of **20**

All printed copies are uncontrolled.

Approved by Forensic Alcohol Supervisor

Interpretation of Alcohol Results

Issued: 05/11/2016 Version: IAR 2016 R0 Effective: 05/16/2016 Status: Archived

Figure 5 illustrates the concept behind the Widmark formula. When a line is extrapolated from the linear post-absorptive phase of an individual's alcohol concentration curve (solid line) back to time zero, the y-intercept represents that individual's alcohol content if the entire alcohol dose was instantaneously absorbed into the blood. This concentration is denoted C_0 in the graph above. A factor called "rho" by Widmark is the dose of alcohol consumed divided by C_0 . The rho factor represents the percent of a person's body weight due to body water and is also referred to as the volume of distribution of ethanol.

Widmark calculations performed by the lab assume a rho factor of 0.68 L/kg for males and 0.55 L/kg for females. It can range from about 0.4 L/kg for an obese female to 0.85 L/kg for a muscular male.³

When calculating maximum alcohol content, the Widmark formula is:

maximum alcohol content (g/100mL) = 100 x alcohol dose in grams / (body weight in grams x rho factor)

This formula can be rearranged to calculate the minimum dose of alcohol required to achieve a given alcohol content as follows:

minimum alcohol dose (g) = (alcohol content in $g/100mL \times body$ weight in grams x rho factor) / 100

The alcohol dose in grams and body weight in grams can be determined using the following formulas:

alcohol dose in grams = vol. of drinks in oz x 29.6 mL/oz x (conc. of alcohol in drink/100) \times 0.789 g/mL

body weight in grams = body weight in pounds x 454 g/lb

See the appendix for tables that give Widmark calculation values based on gender type, weight, and number of standard drinks consumed.

When rho factors were determined by Widmark, the experiment consisted of people rapidly drinking the entire dose of alcohol within 5 to 15 minutes on an empty stomach.³ These conditions maximize the percent of the dose that makes it from the stomach into systemic blood. This percentage is called the bioavailability. Under conditions involving drinking with or after a meal or in repetitive alcohol doses over several hours, the bioavailability of ethanol may be considerably less than 100%.^{3, 8, 9} This decrease in alcohol bioavailability is sometimes called an "alcohol deficit" and should be taken into consideration when discussing long social drinking situations or consumption of food with alcohol.⁹ The alcohol deficit is illustrated in Figure 4 by a lowering of C₀ when a person is given the same dose of alcohol on a fed stomach versus an empty one. A likely explanation for this decrease in bioavailability is the presence of food in the stomach

Interpretation of Alcohol Results

Issued: 05/11/2016 Version: IAR 2016 R0 Effective: 05/16/2016 Status: Archived

delaying gastric emptying. This allows for an increased contact time with gastric alcohol dehydrogenase in the stomach before the alcohol reaches systemic blood.^{3, 8, 9}

Figure 6 illustrates an alcohol concentration curve when ethanol is administered intravenously. 10

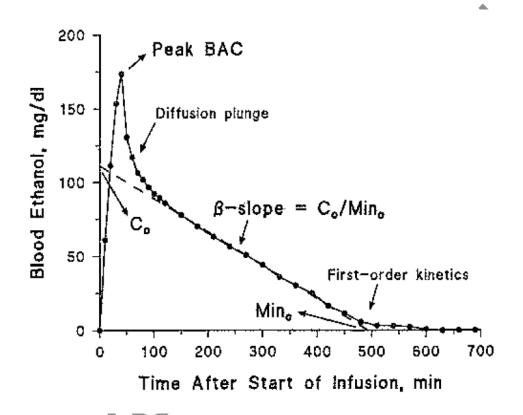


Figure 6: Diffusion plunge after intravenous infusion of ethanol

When alcohol very rapidly enters the blood stream, for example with intravenous infusion, the initial true blood alcohol concentration can be higher than the concentration predicted by the Widmark equation. This is due to the alcohol initially not having time to equilibrate between the central (blood) compartment into the peripheral tissues, where most of the body water is present. The rapid drop that occurs from peak concentration to equilibrated concentration is known as the diffusion plunge. While this situation generally does not occur when alcohol is consumed orally, it can occur with people who have undergone gastric bypass surgery.¹¹

Interpretation of Alcohol Results

Issued: 05/11/2016 Version: IAR 2016 R0 Effective: 05/16/2016 Status: Archived

Forward Extrapolations (What would their alcohol content be N hours after the start of drinking?)

Starting with the maximum alcohol concentration calculated with the Widmark formula (C_0) , an estimate of a person's maximum alcohol content at a time after drinking began can be made using the range of elimination rates listed previously. Referring back to the graph, this is essentially tracing from where the extrapolated line intercepts the y-axis forward to a specific time and determining what the corresponding alcohol content is.

maximum alcohol content N hours after start = maximum alcohol content - elimination rate x N

Retrograde Extrapolations (Given an alcohol result, what would their result be N hours earlier?)

Similar to how an estimate can be made of an individual's alcohol content hours after drinking began starting with the maximum alcohol content calculated using the Widmark formula, an estimate can be made of an individual's alcohol content hours before their alcohol content was measured starting with the result of that measurement.

maximum alcohol content N hours earlier = measured alcohol content + elimination rate x N

Accounting for Unabsorbed Alcohol (What if they drank immediately before the incident?)

Note that the extrapolated dotted line in Figure 4 does not meet with the alcohol concentration curve (solid line) until the post-absorptive phase is reached. When performing extrapolations, the laboratory will assume that the post-absorptive phase has been reached within one hour after the last drink is consumed. If the time between when the last drink was consumed and when the measured result is being extrapolated back to is less than one hour, the effect of unabsorbed alcohol will be taken into account:

max. alcohol content N hrs. earlier = measured alcohol content + elimination x N - unabsorbed alcohol

The contribution to an individual's measured alcohol content due to alcohol still unabsorbed at the time of the incident will be calculated using the Widmark formula.² If no information is provided regarding the dose of alcohol consumed within the hour before the time extrapolated to, a standard dose of 14 grams will be assumed.

Interpretation of Alcohol Results

Issued: 05/11/2016 Version: IAR 2016 R0 Effective: 05/16/2016 Status: Archived

Accounting for Post-incident Alcohol Consumption (What if they drank after the incident but before the test?)

If alcohol consumption is suspected between the time extrapolated back to and the time of the test, the same technique used to account for unabsorbed alcohol will be used to account for post incident consumption where maximum alcohol content N hours earlier equals: ²

Measured alcohol content + elimination x N - unabsorbed alcohol - post incident consumption

As with estimating the effect of unabsorbed alcohol, if no information is provided regarding the dose of alcohol consumed post incident, a standard dose of 14 grams will be assumed.

Interpretation of Alcohol Results

Issued: 05/11/2016 Version: IAR 2016 R0 Effective: 05/16/2016 Status: Archived

References

- 1. International Center for Alcohol Policies, What is a "Standard Drink"?, ICAP Reports 5 (September 1998)
- 2. P Harding, Interpretation of alcohol results, *Alcohol Toxicology for Prosecutors, American Prosecutors Research Institute* (2003) 5-28
- 3. AW Jones, Evidence-based survey of the elimination rates of ethanol from blood with applications in forensic casework, *Forensic Science International* 200 (2010) 1-20
- 4. Alaska Administrative Code 28.35.030
- 5. Kurt M. Dubowski, Stages of Acute Alcoholic Influence/Intoxication Chart, The University of Oklahoma Department of Medicine, Copyright 2006.
- 6. RF Borkenstein, RF Crowther, RP Shumate, WB Ziel, and R Zylman, The Role of the Drinking Driver in Traffic Accidents, *Department of Police Administration, Indiana University, Bloomington, Indiana* (1964)
- 7. RD Blomberg, RC Peck, H Moskowitz, M Burns, and D Fiorentino, Crash risk of alcohol involved driving: a case-control study, *Dunlap and Associates, Inc.* (2005)
- 8. AW Jones and KA Jonsson, Food induced lowering of blood-ethanol profiles and increased rate of elimination immediately after a meal, *J. Forensic Sci.* 39 (1994) 1084-1093
- 9. AW Jones, JG Wigmore, and CJ House, The course of the blood-alcohol curve after consumption of large amounts of alcohol under realistic conditions, *Can. Soc. Forensic Sci. J.* Vol. 39. No 3 (2006) 125-140
- 10.AW Jones and DJ Pounder, Measuring blood alcohol concentration for clinical and forensic purposes, *Drug Abuse Handbook* (1998), SB Karch, p.342
- 11.H Klockhoff, I Näslund, and AW Jones, Faster absorption of ethanol and higher peak concentration in women after gastric bypass surgery, *J Clin Pharmacol*, (2002) 54, 587-591

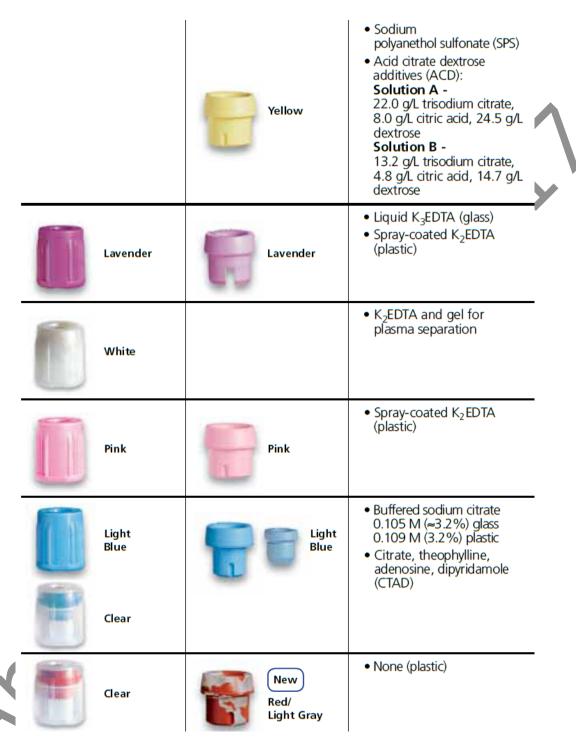
Interpretation of Alcohol Results

							Number	Number of Standard Drinks ²	d Drinks ²						
Body Weight		2	mI	41	101	91	7	∞ı	OI	10	11	12	13	14	15
100	0.045	0.091	0.136	0.181	0.227	0.272	0.317	0.363	0.408	0.453	0.499	0.544	0.590	0.635	0.680
110	0.041	0.082	0.124	0.165	0.206	0.247	0.289	0.330	0.371	0.412	0.453	0.495	0.536	0.577	0.618
120	0.038	0.076	0.113	0.151	0.189	0.227	0.265	0.302	0.340	0.378	0.416	0.453	0.491	0.529	0.567
130	0.035	0.070	0.105	0.140	0.174	0.209	0.244	0.279	0.314	0.349	0.384	0.419	0.453	0.488	0.523
140	0.032	0.065	0.097	0.130	0.162	0.194	0.227	0.259	0.292	0.324	0.356	0.389	0.421	0.453	0.486
150	0.030	090:0	0.091	0.121	0.151	0.181	0.212	0.242	0.272	0.302	0.333	0.363	0.393	0.423	0.453
160	0.028	0.057	0.085	0.113	0.142	0.170	0.198	0.227	0.255	0.283	0.312	0.340	0.368	0.397	0.425
170	0.027	0.053	0.080	0.107	0.133	0.160	0.187	0.213	0.240	0.267	0.293	0.320	0.347	0.373	0.400
180	0.025	0.050	0.076	0.101	0.126	0.151	0.176	0.202	0.227	0.252	0.277	0.302	0.328	0.353	0.378
190	0.024	0.048	0.072	0.095	0.119	0.143	0.167	0.191	0.215	0.239	0.263	0.286	0.310	0.334	0.358
200	0.023	0.045	0.068	0.091	0.113	0.136	0.159	0.181	0.204	0.227	0.249	0.272	0.295	0.317	0.340
210	0.022	0.043	0.065	0.086	0.108	0.130	0.151	0.173	0.194	0.216	0.238	0.259	0.281	0.302	0.324
220	0.021	0.041	0.062	0.082	0.103	0.124	0.144	0.165	0.186	0.206	0.227	0.247	0.268	0.289	0.309
230	0.020	0.039	0.059	0.079	0.099	0.118	0.138	0.158	0.177	0.197	0.217	0.237	0.256	0.276	0.296
240	0.019	0.038	0.057	0.076	0.094	0.113	0.132	0.151	0.170	0.189	0.208	0.227	0.246	0.265	0.283
250	0.018	0.036	0.054	0.073	0.091	0.109	0.127	0.145	0.163	0.181	0.200	0.218	0.236	0.254	0.272
260	0.017	0.035	0.052	0.070	0.087	0.105	0.122	0.140	0.157	0.174	0.192	0.209	0.227	0.244	0.262
270	0.017	0.034	0.050	0.067	0.084	0.101	0.118	0.134	0.151	0.168	0.185	0.202	0.218	0.235	0.252
280	0.016	0.032	0.049	0.065	0.081	0.097	0.113	0.130	0.146	0.162	0.178	0.194	0.211	0.227	0.243
290	0.016	0.031	0.047	0.063	0.078	0.094	0.109	0.125	0.141	0.156	0.172	0.188	0.203	0.219	0.235
300	0.015	0:030	0.045	090.0	0.076	0.091	0.106	0.121	0.136	0.151	0.166	0.181	0.197	0.212	0.227
	This table	uses the V	This table uses the Widmark for	rmula to ca	alculate a p	oerson's <u>m</u>	aximum al	mula to calculate a person's maximum alcohol content for a given gender, body weight, and dose of alcohol	<u>ent</u> for a gi	ven gende	r, body we	ight, and c	lose of alco	ohol.	
	lt assume:	sinstantan	eous and c	omplete a	bsorption	of the enti	re alcohol	It assumes instantaneous and complete absorption of the entire alcohol dose into a person's systemic blood	s person's	systemicb	lood.				
	Converse	ly, the tabl	e can be us	ed to calcu	ulate the <u>m</u>	ninimum a	mount of a	Conversely, the table can be used to calculate the minimum amount of alcohol that must be consumed to achieve a given alcohol content.	must be c	<u>onsumed</u>	to achieve	a given alc	ohol conte	nt.	
	:														
	¹All calcul	ations in th	nis table as	sume a <u>Wi</u>	dmark rho	factor of C	.68 L/kg fo	*All calculations in this table assume a Widmark rho factor of 0.68 L/kg for males and 0.55 L/kg for females. The rho factor represents the percent	d 0.55 L/kg	for female	es. The rho	factor rep	resents th	e percent	
	ot a perso	v kpod s.uc	veight due	to body w	ater. It car	range tro	m about 0.	of a person's body weight due to body water. It can range from about 0.4 L/kg for an obese female to 0.85 L/kg for a muscular male.	n obese te	male to 0.	85 L/kg tor	a muscula	r male.		
	² A U.S. sta	standard drink contains	k contains	14 g of pur	e ethanol.	14 g of pure ethanol. This is equivalent to:	uivalent to		•						
				12 ounces	12 ounces of 5% (v/v) beer	.) beer									
				5 ounces c	5 ounces of 12% (v/v) wine	') wine						1			
				1.5 ounces	5 ounces of 40% (v/v) liquor	/v) liquor)				
	1000	ייל לייל מי	יס/ למני יאמייל בינה מניים מסמי זס		w ixc	o lodoole a	100+00-00-00-00-00-00-00-00-00-00-00-00-0	to factors maximum alockol content to be delicited institut the Widming formers	50:01-	+ho \\\idensign	June formation	mollow to			
	Maria	2 lodole	Maximum alcohol content (a/d)	1) - 100*	S, maxima	in grame/	(bodywei	1 = 100* Alcohol does in grame ((body weight in grame*Widmark the factor)	**************************************	rk rho fact		2010			
	where		2/0			0	(1)	0			i				
	Alcohol de	ose in gran	Alcohol dose in grams = (Volum	e of drink	s in ounces	s)*(29.6 mL	-/oz)*(Con	e of drinks in ounces) *(29.6 mL/oz) *(Concentration of alcohol in drink/100) *(0.789 g/mL)	of alcohol	in drink/10	00)*(0.789	g/mL)			
	and														

Interpretation of Alcohol Results

Y							Number	Number of Standard Drinks ²	d Drinks ²						
Body Weight	1	2	က	4	2	9	7	8	6	10	11	12	13	14	15
100	0	0.112	0.168	0.224	0.280	0.336	0.392	0.449	0.505	0.561	0.617	0.673	0.729	0.785	0.841
110	0.051	0.105	0.153	0.204	0.255	0.306	0.357	0.408	0.459	0.510	0.561	0.612	0.663	0.714	0.765
120	0.047	0.093	0.140	0.187	0.234	0.280	0.327	0.374	0.421	0.467	0.514	0.561	0.607	0.654	0.701
130	0.043	0.086	0.129	0.173	0.216	0.259	0.302	0.345	0.388	0.431	0.474	0.518	0.561	0.604	0.647
140	0.040	0.080	0,120	0.160	0.200	0.240	0.280	0.320	0.360	0.400	0.441	0.481	0.521	0.561	0.601
150	0.037	0.075	0.112	0.150	0.187	0.224	0.262	0.299	0.336	0.374	0.411	0.449	0.486	0.523	0.561
160	0.035	0.070	0.105	0.140	0.175	0.210	0.245	0.280	0.315	0.350	0.385	0.421	0.456	0.491	0.526
170	0.033	990.0	0.099	0.132	0.165	0.198	0.231	0.264	0.297	0.330	0.363	0.396	0.429	0.462	0.495
180	0.031	0.062	0.093	0.125	0.156	0.187	0.218	0.249	0.280	0.311	0.343	0.374	0.405	0.436	0.467
190	0:030	0.059	0.089	0.118	0.148	0.177	0.207	0.236	0.266	0.295	0.325	0.354	0.384	0.413	0.443
200	0.028	0.056	0.084	0.112	0.140	0.168	0.196	0.224	0.252	0.280	0.308	0.336	0.364	0.392	0.421
210	0.027	0.053	0.080	0.107	0.133	0.160	0.187	0.214	0.240	0.267	0.294	0.320	0.347	0.374	0.400
220	0.025	0.051	0.076	0.102	0.127	0.153	0.178	0.204	0.229	0.255	0.280	0.306	0.331	0.357	0.382
230	0.024	0.049	0.073	0.098	0.122	0.146	0.171	0.195	0.219	0.244	0.268	0.293	0.317	0.341	0.366
240	0.023	0.047	0.070	0.093	0.117	0.140	0.164	0.187	0.210	0.234	0.257	0.280	0.304	0.327	0.350
250	0.022	0.045	0.067	0.090	0.112	0.135	0.157	0.179	0.202	0.224	0.247	0.269	0.292	0.314	0.336
260	0.022	0.043	0.065	0.086	0.108	0.129	0.151	0.173	0.194	0.216	0.237	0.259	0.280	0.302	0.323
270	0.021	0.042	0.062	0.083	0.104	0.125	0.145	0.166	0.187	0.208	0.228	0.249	0.270	0.291	0.311
280	0.020	0.040	090'0	0.080	0.100	0.120	0.140	0.160	0.180	0.200	0.220	0.240	0.260	0.280	0.300
290	0.019	0.039	0.058	0.077	0.097	0.116	0.135	0.155	0.174	0.193	0.213	0.232	0.251	0.271	0.290
300	0.019	0.037	0.056	0.075	0.093	0.112	0.131	0.150	0.168	0.187	0.206	0.224	0.243	0.262	0.280
	This table	uses the V	Vidmark fo	rmula to Œ	alculate a p	oerson's <u>m</u> .	aximum alc	This table uses the Widmark formula to calculate a person's maximum alcohol content for a given gender, body weight, and dose of alcohol.	<u>ent</u> for a gi	ven gende	r, body we	ight, and c	lose of alc	ohol.	
	It assume.	It assumes instantaneous and $lpha$	eons and c	omplete a	bsorption	of the enti	re alcohol	complete absorption of the entire alcohol dose into a person's systemic blood	s uosiad t	systemicb	lood.				
	Converse	Conversely, the table can be us	e can be us	sed to calcu	ılate the <u>m</u>	ınimum ar	nount of a	sed to calculate the minimum amount of alcohol that must be consumed to achieve a given alcohol content.	must be c	onsumed	to achieve	a given alc	ohol conte	nt.	
	¹ All calcul	¹ All calculations in this table as	nis table as	sume a <u>Wi</u>	dmark rho	factor of 0	.68 L/kg fo	sume a Widmark rho factor of 0.68 L/kg for males and 0.55 L/kg for females. The rho factor represents the percent	d 0.55 L/kg	for female	es. The rho	factor rep	resents th	e percent	
	of a perso	of a person's body weight due	veight due	to body wa	ater. It can	range fror	n about 0.	to body water. It can range from about 0.4 L/kg for an obese female to 0.85 L/kg for a muscular male.	n obese fe	male to 0.	85 L/kg for	a muscula	r male.		
	25	-													
	A U.S. sta	standard drink contains	ık contains	14 g of pur	e ethanol.	I his is eq	14 g of pure ethanol. This is equivalent to:								
				TZ DUILCES	12 Unices OI 3% (v/v) wipe) Deel									
				1 E 011000	1 E compact of 40% (2, 42) liquida) will 6									
				1.0 Odlice	(a) 8/0t 10 6	ionhii (a									
	For non st	andard dri	nks and/or	rho factor	s, maximui	m alcohol c	content car	For non standard drinks and/or rho factors, maximum alcohol content can be calculated using the Widmark formula as follows:	sted using	the Widm	ark formula	a as follow:	S:		
	Maximum	Maximum alcohol content (g/	ontent (g/o	L) = 100*AI	cohol dose	e in grams/	(body wei	$\Delta L_{\rm S} = 100^{*} {\rm Alcoholdose}$ in grams/(body weight in grams *Widmark rho factor)	ıs*Widma	rk rho fact	or)	Ì	1		
	where														
	Alcohol d	Alcohol dose in grams = (Volun	nolov) = sr	ne of drink	s in ounces	5)*(29.6 mL	/oz)*(con	ne of drinks in ounces) $*(29.6\mathrm{mL/oz})*(\mathrm{Concentration}\mathrm{of}\mathrm{alcohol}\mathrm{in}\mathrm{drink}/100)*(0.789\mathrm{g/mL})$	of alcohol	in drink/1	00)*(0.789	g/mL)			
	and														
	(12) v L v) + (

Interpretation of Alcohol Results


Issued: 05/11/2016 Version: IAR 2016 R0 Effective: 05/16/2016 Status: Archived

Blood Tube Top Colors and their Additives

	Gold	Red/ Gray	Clot activator and gel for serum separation	1
•	Light Green	Green/ Gray	Lithium heparin and gel for plasma separation	> \
	Red	Red	Silicone coated (glass)Clot activator, Silicone coated (plastic)	
•	Orange		Thrombin-based clot activator with gel for serum separation	
·	Orange		Thrombin-based clot activator	
	Royal Blue		 Clot activator (plastic serum) K₂EDTA (plastic) 	
	Green	Green	Sodium heparin Lithium heparin	
	Gray	Gray	 Potassium oxalate/ sodium fluoride Sodium fluoride/Na₂ EDTA Sodium fluoride (serum tube) 	
•	Tan		• K ₂ EDTA (plastic)	
		D 40 -f 22		

Interpretation of Alcohol Results

Issued: 05/11/2016 Version: IAR 2016 R0 Effective: 05/16/2016 Status: Archived

Taken from: BD Diagnostics, BD Vacutainer Venous Blood Collection Tube Guide, 2010

Interpretation of Alcohol Results

Issued: 05/11/2016 Version: IAR 2016 R0 Effective: 05/16/2016 Status: Archived

Revision History

2016 R0 Page	2015 R0 Page	Location	Revision made
5	n/a	Impairing Effects of Alcohol	Added Stages of Acute Alcoholic Influence/Intoxication chart. Updated figure numbers and references as needed.