Content

<table>
<thead>
<tr>
<th>Content</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol, Proof and Standard Drinks</td>
<td>2</td>
</tr>
<tr>
<td>Common Conversion Units</td>
<td>3</td>
</tr>
<tr>
<td>Impairing Effects of Ethanol</td>
<td>4</td>
</tr>
<tr>
<td>Absorption, Distribution and Elimination</td>
<td>9</td>
</tr>
<tr>
<td>Widmark’s Equation and Calculations</td>
<td>10</td>
</tr>
<tr>
<td>References</td>
<td>15</td>
</tr>
<tr>
<td>Appendices</td>
<td>16-19</td>
</tr>
<tr>
<td>Revision History</td>
<td>20</td>
</tr>
</tbody>
</table>
Introduction

The intent of this manual is to describe how forensic scientists within the forensic alcohol discipline at the Scientific Crime Detection Laboratory will interpret the results of blood and breath alcohol measurements. It also serves as a summary to the legal community as to what to expect when a forensic scientist’s testimony is to include alcohol interpretation.

Ethanol

The chemical name for the alcohol that is commonly consumed is ethanol (or ethyl alcohol). In this document, alcohol and ethanol are used interchangeably. Ethanol is a small, water soluble molecule that is readily absorbed and distributed by the blood throughout all of the water-containing components of the body.

Alcohol Proof

The concentration of an alcoholic beverage is commonly listed in the units of proof. The concentration of alcohol in percent by volume is one half the proof.

\[80 \text{ Proof} = 40 \% \ (v/v)\]

The common abbreviations for alcohol percent by volume are abv and \% (v/v). The volume of pure ethanol can be converted to its mass by using ethanol’s density.

\[1 \text{ mL ethanol} = 0.789 \text{ grams ethanol}\]

Standard Drinks

The term “standard drink” applies to drinks of “standard” alcoholic strength. In the United States, a standard drink is officially defined as containing the equivalent of 14 grams of ethanol.\(^1\) The resulting concentration of ethanol (\% v/v) when 14 grams of pure ethanol is diluted to a given volume can be calculated as follows:

\[
\text{Concentration in abv} = \frac{(100 \times 14 \text{ g})}{(\text{volume of drink in oz} \times 29.6 \text{ mL/oz} \times 0.789 \text{ g/mL})}
\]

This gives the following drink concentrations for a United States standard alcoholic drink containing 14 grams of alcohol:

- 12 ounces of 5\% (v/v) beer
- 5 ounces of 12\% (v/v) wine
- 1.5 ounces of 40\% (v/v) spirits
Common unit conversions

The Crime Laboratory reports blood alcohol concentrations in units of “grams per 100 milliliters” abbreviated as g/100mL. Other laboratories may use the units of “grams per deciliter” abbreviated g/dL. Because one deciliter equals 100 milliliters, these units are equivalent.

\[
0.080 \text{ g/100mL} = 0.080 \text{ g/dL}
\]

Alcohol concentrations reported in medical results are commonly in units of “milligrams per deciliter” abbreviated mg/dL. Because one gram equals 1000 milligrams, mg/dL can be converted to g/dL by dividing by 1000.

\[
80 \text{ mg/dL} = 0.080 \text{ g/dL} = 0.080 \text{ g/100mL}
\]

Converting Serum and Plasma Results to Whole Blood

Although hospital results frequently report alcohol concentrations as being from blood, serum or plasma is often the sample analyzed. Serum is the liquid that remains when blood is collected without an anticoagulant and allowed to clot. Plasma is the liquid separated from whole blood and treated with an anticoagulant when the blood cells are removed.

Ethanol distributes throughout all of the water-containing components of the body. Since serum or plasma represents the water portion of whole blood, it will have a higher alcohol content than the whole blood from which it came. The average ratio of serum and plasma alcohol content to whole blood alcohol content is approximately 1.14:1 with a range of 1.04:1 to 1.26:1. The whole blood concentration can be calculated from the serum or plasma alcohol concentration result by using the average ratio.

\[
\text{Whole blood alcohol content} = \frac{\text{Serum or Plasma Alcohol Content}}{1.14}
\]

Breath and Blood Alcohol

Breath alcohol instruments indirectly estimate a person’s blood alcohol concentration using a calibration factor called the blood/breath ratio. This ratio describes how the concentration of alcohol in someone’s venous blood relates to the concentration of alcohol in their deep lung air. Breath instruments in the United States assume a blood/breath ratio of 2100:1. Studies have shown that the blood/breath ratio is less than 2000:1 during the absorptive phase, increasing to about 2100:1 by 90 minutes post-dosing, and further increasing to 2300:1 or 2400:1 later in the post-absorptive phase. Because of the variability in an individual’s blood/breath ratio, a breath alcohol concentration result should not be converted to a blood alcohol concentration. Despite this variability in the blood/breath ratio, both breath and blood alcohol testing are valid when determining someone’s current alcohol content.
The Alaska Administrative Code lists the legal limit of 0.08 in both blood (g/100mL) and breath (g/210L) units making any conversion between the two unnecessary.4

Impairing Effects of Ethanol

Ethanol is a central nervous system depressant. The magnitude of its depressant effects is dependent on the dose consumed. The depressant effects of alcohol cause an increase in reaction time (decrease in information processing rate), a decrease in judgment, and a decrease in coordination.

Outward signs of intoxication can vary based on the individual. Figure 1 outlines some of the clinical signs and symptoms of ethanol intoxication and the blood alcohol ranges at which they may be observed.5
STAGES OF ACUTE ALCOHOLIC INFLUENCE/INTOXICATION

<table>
<thead>
<tr>
<th>BLOOD-ALCOHOL CONCENTRATION (grams/100 mL)</th>
<th>STAGE OF ALCOHOLIC INFLUENCE</th>
<th>CLINICAL SIGNS/SYMPTOMS</th>
</tr>
</thead>
</table>
| 0.01-0.05 | Subclinical | Influence/effects usually not apparent or obvious
Behavior nearly normal by ordinary observation
Impairment detectable by special tests |
| 0.03-0.12 | Euphoria | Mild euphoria, sociability, talkativeness
Increased self-confidence; decreased inhibitions
Diminished attention, judgment and control
Some sensory-motor impairment
Slowed information processing
Loss of efficiency in critical performance tests |
| 0.09-0.25 | Excitement | Emotional instability; loss of critical judgment
Impairment of perception, memory and comprehension
Decreased sensory response; increased reaction time
Reduced visual acuity & peripheral vision; and slow glare recovery
Sensory-motor incoordination; impaired balance; slurred speech; vomiting; drowsiness |
| 0.18-0.30 | Confusion | Disorientation, mental confusion; vertigo; dysphoria
Exaggerated emotional states (fear, rage, grief, etc)
Disturbances of vision (diplopia, etc.) and of perception of color, form, motion, dimensions
Increased pain threshold
Increased muscular incoordination; staggering gait; ataxia
Apathy, lethargy |
| 0.25-0.40 | Stupor | General inertia; approaching loss of motor functions
Markedly decreased response to stimuli
Marked muscular incoordination; inability to stand or walk
Vomiting; incontinence of urine and feces
Impaired consciousness; sleep or stupor |
| 0.35-0.50 | Coma | Complete unconsciousness; coma; anesthesia
Depressed or abolished reflexes
Subnormal temperature
Impairment of circulation and respiration
Possible death |
| 0.45+ | Death | Death from respiratory arrest |

Figure 1: Ethanol Impairment Signs and Symptoms Chart
Studies have compared the relative vehicle crash risk of people at a specific alcohol level to people with no alcohol in their system.6,7 Relative crash risk asks the question, “What are the odds of a person getting in an accident at a particular BAC compared to the odds of a person getting in an accident with no alcohol in their system?” Mathematically, this is expressed as:

\[
\text{Relative Crash Risk} = \frac{\left(\frac{N_{\text{crash}}}{N_{\text{control}}}\right)_{\text{BAC}=x}}{\left(\frac{N_{\text{crash}}}{N_{\text{control}}}\right)_{\text{BAC}=0}}
\]

The largest of these studies used crash data from Grand Rapids, MI and more recently in Long Beach, CA and Fort Lauderdale, FL.

As illustrated in Figure 2, results confirm a notable dose-response relationship beginning at 0.04 g/100mL and increasing exponentially at greater than 0.10 g/100mL.6
Figure 3 shows these results in tabulated form.

<table>
<thead>
<tr>
<th>BAC</th>
<th>No Covariates</th>
<th>Non-reactive Demographic Covariates</th>
<th>Final Adjusted Estimate</th>
<th>Grand Rapids*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>.01</td>
<td>.91</td>
<td>.94</td>
<td>1.03</td>
<td>.92</td>
</tr>
<tr>
<td>.02</td>
<td>.87</td>
<td>.92</td>
<td>1.03</td>
<td>.96</td>
</tr>
<tr>
<td>.03</td>
<td>.87</td>
<td>.94</td>
<td>1.06</td>
<td>.80</td>
</tr>
<tr>
<td>.04</td>
<td>.92</td>
<td>1.00</td>
<td>1.18</td>
<td>1.08</td>
</tr>
<tr>
<td>.05</td>
<td>1.00</td>
<td>1.10</td>
<td>1.33</td>
<td>1.21</td>
</tr>
<tr>
<td>.06</td>
<td>1.13</td>
<td>1.25</td>
<td>1.63</td>
<td>1.41</td>
</tr>
<tr>
<td>.07</td>
<td>1.32</td>
<td>1.46</td>
<td>2.09</td>
<td>1.52</td>
</tr>
<tr>
<td>.08</td>
<td>1.57</td>
<td>1.74</td>
<td>2.69</td>
<td>1.88</td>
</tr>
<tr>
<td>.09</td>
<td>1.92</td>
<td>2.12</td>
<td>3.54</td>
<td>1.95</td>
</tr>
<tr>
<td>.10</td>
<td>2.37</td>
<td>2.62</td>
<td>4.79</td>
<td>5.93</td>
</tr>
<tr>
<td>.11</td>
<td>2.98</td>
<td>3.28</td>
<td>6.41</td>
<td>4.94</td>
</tr>
<tr>
<td>.12</td>
<td>3.77</td>
<td>4.14</td>
<td>8.90</td>
<td></td>
</tr>
<tr>
<td>.13</td>
<td>4.78</td>
<td>5.23</td>
<td>12.06</td>
<td>10.44</td>
</tr>
<tr>
<td>.14</td>
<td>6.05</td>
<td>6.60</td>
<td>16.36</td>
<td></td>
</tr>
<tr>
<td>.15</td>
<td>7.61</td>
<td>8.31</td>
<td>22.10</td>
<td></td>
</tr>
<tr>
<td>.16</td>
<td>9.48</td>
<td>10.35</td>
<td>29.48</td>
<td></td>
</tr>
<tr>
<td>.17</td>
<td>11.64</td>
<td>12.74</td>
<td>39.05</td>
<td></td>
</tr>
<tr>
<td>.18</td>
<td>14.00</td>
<td>15.43</td>
<td>50.99</td>
<td></td>
</tr>
<tr>
<td>.19</td>
<td>16.45</td>
<td>18.31</td>
<td>65.32</td>
<td></td>
</tr>
<tr>
<td>.20</td>
<td>18.78</td>
<td>21.20</td>
<td>81.79</td>
<td>21.38</td>
</tr>
<tr>
<td>.21</td>
<td>20.74</td>
<td>23.85</td>
<td>99.78</td>
<td></td>
</tr>
<tr>
<td>.22</td>
<td>22.07</td>
<td>25.99</td>
<td>117.72</td>
<td></td>
</tr>
<tr>
<td>.23</td>
<td>22.51</td>
<td>27.30</td>
<td>134.26</td>
<td></td>
</tr>
<tr>
<td>.24</td>
<td>21.92</td>
<td>27.55</td>
<td>146.90</td>
<td></td>
</tr>
<tr>
<td>.25+</td>
<td>20.29</td>
<td>26.60</td>
<td>153.68</td>
<td></td>
</tr>
</tbody>
</table>

*From reporting of Grand Rapids Study data in Table 25 (a) of Allsop (1966).
The authors of the Grand Rapids study concluded that at above a 0.08% blood alcohol level, factors other than alcohol became less and less significant and eventually seemed to disappear. This is compelling evidence that alcohol is a major factor in traffic crash causation. In addition to these studies, the Committee on Alcohol and Other Drugs of the National Safety Council have concluded that all individuals are impaired with respect to operating a motor vehicle at concentrations of 0.08 and above, while some individuals are impaired with respect to driving at concentrations below 0.08.

General Alcohol Concentration Curve

When a person consumes alcohol, the time course of ethanol concentration in the blood can be divided into three phases: absorptive, peak, and post-absorptive. These phases are illustrated in Figure 4.

As soon as alcohol is absorbed into the body, the body begins to eliminate it. During the absorptive phase, alcohol concentration is increasing at a faster rate than it is being eliminated, at the peak, absorption and elimination rates are equal, and after absorption of alcohol is complete, alcohol concentration will decrease until it is completely eliminated.
Absorption

When alcohol is ingested, about 20-25% of the dose is absorbed through the stomach lining and the remaining 75-80% is absorbed when it leaves the stomach and enters the small intestine. The most important factor affecting the rate of absorption is the presence of food in the stomach concurrent with alcohol. **Peak concentrations are generally attained within 30 to 60 minutes of the cessation of drinking.** When alcohol is consumed successively over time, as in a social drinking situation, peak concentrations are generally attained within 30 minutes of the last drink and may even be attained before the last drink is finished.

Distribution

Because alcohol is completely water soluble, the alcohol concentration in the body after absorbing a given dose is proportional to a person’s total water content. **The more water a person has in their body, the less concentrated a given dose of alcohol will be after it is absorbed and distributed.** About 68% of an average male’s body weight is due to body water, while the percentage is 55% for average females.

Elimination

At blood alcohol concentrations above 0.02 g/100mL, the metabolic capacity of the primary enzyme responsible for ethanol elimination (hepatic alcohol dehydrogenase) is saturated. This means that the rate of ethanol elimination is independent of the remaining ethanol concentration in the blood (zero-order kinetics). **The majority of the human population eliminates alcohol at a rate between 0.010 g/100mL/hr and 0.025 g/100mL/hr with an average elimination rate of 0.017 g/100mL/hr.** Factors that may have an effect on an individual’s elimination rate include how well-nourished the person is and whether continuous drinking has occurred over a period of several days. An individual’s elimination rate will vary and, rather than speculating over what their specific elimination rate was during the time of interest, it is more practical to use the elimination range and average listed above.
The Widmark Calculation and Extrapolations

The calculations described in this section should be viewed as a general guideline or rough estimate. While based on accepted scientific principles and peer-reviewed data, calculating an alcohol concentration is not as accurate or reliable as a measured breath or blood alcohol concentration.

Widmark Formula

The Widmark Formula is used to answer these questions:

- What is the minimum number of drinks needed to reach a certain level?
- What would their maximum possible alcohol content be given a certain dose of alcohol?

The Widmark formula can be used to calculate a person’s **maximum alcohol content** for a given gender, body weight, and dose of alcohol. It assumes instantaneous and complete absorption of the entire alcohol dose into a person’s systemic blood. Conversely, the formula can be used to calculate the **minimum amount of alcohol that must be consumed** to achieve a given alcohol content.
Figure 5 illustrates the concept behind the Widmark formula. When a line is extrapolated from the linear post-absorptive phase of an individual’s alcohol concentration curve (solid line) back to time zero, the y-intercept represents that individual’s alcohol content if the entire alcohol dose was instantaneously absorbed into the blood. This concentration is denoted C_0 in the graph above. A factor called “rho” by Widmark is the dose of alcohol consumed divided by C_0. The rho factor represents the percent of a person’s body weight due to body water and is also referred to as the volume of distribution of ethanol.

Widmark calculations performed by the lab assume a rho factor of 0.68 L/kg for males and 0.55 L/kg for females. It can range from about 0.4 L/kg for an obese female to 0.85 L/kg for a muscular male.

When calculating maximum alcohol content, the Widmark formula is:

$$\text{maximum alcohol content (g/100mL) = 100 x alcohol dose in grams / (body weight in grams x rho factor)}$$

This formula can be rearranged to calculate the minimum dose of alcohol required to achieve a given alcohol content as follows:

$$\text{minimum alcohol dose (g) = (alcohol content in g/100mL x body weight in grams x rho factor) / 100}$$

The alcohol dose in grams and body weight in grams can be determined using the following formulas:

$$\text{alcohol dose in grams = vol. of drinks in oz x 29.6 mL/oz x (conc. of alcohol in drink/100)}$$
$$\text{ x 0.789 g/mL}$$

$$\text{body weight in grams = body weight in pounds x 454 g/lb}$$

See the appendix for tables that give Widmark calculation values based on gender type, weight, and number of standard drinks consumed.

When rho factors were determined by Widmark, the experiment consisted of people rapidly drinking the entire dose of alcohol within 5 to 15 minutes on an empty stomach. These conditions maximize the percent of the dose that makes it from the stomach into systemic blood. This percentage is called the bioavailability. Under conditions involving drinking with or after a meal or in repetitive alcohol doses over several hours, the bioavailability of ethanol may be considerably less than 100%. This decrease in alcohol bioavailability is sometimes called an “alcohol deficit” and should be taken into consideration when discussing long social drinking situations or consumption of food with alcohol. The alcohol deficit is illustrated in Figure 4 by a lowering of C_0 when a person is given the same dose of alcohol on a fed stomach versus an empty one. A likely explanation for this decrease in bioavailability is the presence of food in the stomach.
delaying gastric emptying. This allows for an increased contact time with gastric alcohol dehydrogenase in the stomach before the alcohol reaches systemic blood.3, 8, 9

Figure 6 illustrates an alcohol concentration curve when ethanol is administered intravenously.10

![Figure 6: Diffusion plunge after intravenous infusion of ethanol](image)

When alcohol very rapidly enters the blood stream, for example with intravenous infusion, the initial true blood alcohol concentration can be higher than the concentration predicted by the Widmark equation. This is due to the alcohol initially not having time to equilibrate between the central (blood) compartment into the peripheral tissues, where most of the body water is present. The rapid drop that occurs from peak concentration to equilibrated concentration is known as the diffusion plunge. While this situation generally does not occur when alcohol is consumed orally, it can occur with people who have undergone gastric bypass surgery.11
Forward Extrapolations (What would their alcohol content be N hours after the start of drinking?)

Starting with the maximum alcohol concentration calculated with the Widmark formula \((C_0)\), an estimate of a person’s maximum alcohol content at a time after drinking began can be made using the range of elimination rates listed previously. Referring back to the graph, this is essentially tracing from where the extrapolated line intercepts the \(y\)-axis forward to a specific time and determining what the corresponding alcohol content is.

\[
\text{maximum alcohol content N hours after start} = \text{maximum alcohol content} - \text{elimination rate} \times N
\]

Retrograde Extrapolations (Given an alcohol result, what would their result be N hours earlier?)

Similar to how an estimate can be made of an individual’s alcohol content hours after drinking began starting with the maximum alcohol content calculated using the Widmark formula, an estimate can be made of an individual’s alcohol content hours before their alcohol content was measured starting with the result of that measurement.

\[
\text{maximum alcohol content N hours earlier} = \text{measured alcohol content} + \text{elimination rate} \times N
\]

Accounting for Unabsorbed Alcohol (What if they drank immediately before the incident?)

Note that the extrapolated dotted line in Figure 4 does not meet with the alcohol concentration curve (solid line) until the post-absorptive phase is reached. **When performing extrapolations, the laboratory will assume that the post-absorptive phase has been reached within one hour after the last drink is consumed.** If the time between when the last drink was consumed and when the measured result is being extrapolated back to is less than one hour, the effect of unabsorbed alcohol will be taken into account:

\[
\text{max. alcohol content N hrs. earlier} = \text{measured alcohol content} + \text{elimination} \times N - \text{unabsorbed alcohol}
\]

The contribution to an individual’s measured alcohol content due to alcohol still unabsorbed at the time of the incident will be calculated using the Widmark formula.\(^2\) If no information is provided regarding the dose of alcohol consumed within the hour before the time extrapolated to, a standard dose of 14 grams will be assumed.
Accounting for Post-incident Alcohol Consumption (What if they drank after the incident but before the test?)

If alcohol consumption is suspected between the time extrapolated back to and the time of the test, the same technique used to account for unabsorbed alcohol will be used to account for post incident consumption where maximum alcohol content N hours earlier equals:

$$\text{Measured alcohol content} + \text{elimination} \times N - \text{unabsorbed alcohol} - \text{post incident consumption}$$

As with estimating the effect of unabsorbed alcohol, if no information is provided regarding the dose of alcohol consumed post incident, a standard dose of 14 grams will be assumed.
References

1. International Center for Alcohol Policies, What is a "Standard Drink"?, *ICAP Reports 5* (September 1998)
4. Alaska Administrative Code 28.35.030
5. Kurt M. Dubowski, Stages of Acute Alcoholic Influence/Intoxication Chart, The University of Oklahoma Department of Medicine, Copyright 2006.
Alcohol Chart for Males

<table>
<thead>
<tr>
<th>Body Weight</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.045</td>
<td>0.091</td>
<td>0.136</td>
<td>0.181</td>
<td>0.227</td>
<td>0.272</td>
<td>0.317</td>
<td>0.363</td>
<td>0.408</td>
<td>0.453</td>
<td>0.499</td>
<td>0.544</td>
<td>0.590</td>
<td>0.635</td>
<td>0.680</td>
</tr>
<tr>
<td>110</td>
<td>0.041</td>
<td>0.082</td>
<td>0.124</td>
<td>0.165</td>
<td>0.206</td>
<td>0.247</td>
<td>0.289</td>
<td>0.330</td>
<td>0.371</td>
<td>0.412</td>
<td>0.453</td>
<td>0.495</td>
<td>0.536</td>
<td>0.577</td>
<td>0.618</td>
</tr>
<tr>
<td>120</td>
<td>0.039</td>
<td>0.076</td>
<td>0.113</td>
<td>0.151</td>
<td>0.189</td>
<td>0.227</td>
<td>0.265</td>
<td>0.302</td>
<td>0.340</td>
<td>0.378</td>
<td>0.416</td>
<td>0.453</td>
<td>0.491</td>
<td>0.519</td>
<td>0.527</td>
</tr>
<tr>
<td>130</td>
<td>0.035</td>
<td>0.070</td>
<td>0.105</td>
<td>0.140</td>
<td>0.174</td>
<td>0.209</td>
<td>0.244</td>
<td>0.278</td>
<td>0.307</td>
<td>0.345</td>
<td>0.384</td>
<td>0.419</td>
<td>0.453</td>
<td>0.488</td>
<td>0.523</td>
</tr>
<tr>
<td>140</td>
<td>0.032</td>
<td>0.065</td>
<td>0.097</td>
<td>0.130</td>
<td>0.162</td>
<td>0.194</td>
<td>0.227</td>
<td>0.259</td>
<td>0.292</td>
<td>0.324</td>
<td>0.356</td>
<td>0.389</td>
<td>0.421</td>
<td>0.453</td>
<td>0.486</td>
</tr>
<tr>
<td>150</td>
<td>0.030</td>
<td>0.060</td>
<td>0.091</td>
<td>0.121</td>
<td>0.151</td>
<td>0.181</td>
<td>0.212</td>
<td>0.242</td>
<td>0.272</td>
<td>0.302</td>
<td>0.333</td>
<td>0.363</td>
<td>0.393</td>
<td>0.423</td>
<td>0.453</td>
</tr>
<tr>
<td>160</td>
<td>0.028</td>
<td>0.057</td>
<td>0.085</td>
<td>0.113</td>
<td>0.142</td>
<td>0.170</td>
<td>0.198</td>
<td>0.227</td>
<td>0.255</td>
<td>0.283</td>
<td>0.312</td>
<td>0.340</td>
<td>0.368</td>
<td>0.397</td>
<td>0.425</td>
</tr>
<tr>
<td>170</td>
<td>0.027</td>
<td>0.053</td>
<td>0.080</td>
<td>0.107</td>
<td>0.133</td>
<td>0.160</td>
<td>0.187</td>
<td>0.213</td>
<td>0.240</td>
<td>0.267</td>
<td>0.293</td>
<td>0.320</td>
<td>0.347</td>
<td>0.373</td>
<td>0.400</td>
</tr>
<tr>
<td>180</td>
<td>0.025</td>
<td>0.050</td>
<td>0.076</td>
<td>0.101</td>
<td>0.126</td>
<td>0.151</td>
<td>0.176</td>
<td>0.202</td>
<td>0.227</td>
<td>0.252</td>
<td>0.277</td>
<td>0.302</td>
<td>0.328</td>
<td>0.353</td>
<td>0.378</td>
</tr>
<tr>
<td>190</td>
<td>0.024</td>
<td>0.048</td>
<td>0.072</td>
<td>0.095</td>
<td>0.119</td>
<td>0.143</td>
<td>0.167</td>
<td>0.191</td>
<td>0.215</td>
<td>0.239</td>
<td>0.263</td>
<td>0.286</td>
<td>0.310</td>
<td>0.334</td>
<td>0.358</td>
</tr>
<tr>
<td>200</td>
<td>0.023</td>
<td>0.045</td>
<td>0.068</td>
<td>0.091</td>
<td>0.113</td>
<td>0.136</td>
<td>0.159</td>
<td>0.181</td>
<td>0.204</td>
<td>0.227</td>
<td>0.249</td>
<td>0.272</td>
<td>0.295</td>
<td>0.317</td>
<td>0.340</td>
</tr>
<tr>
<td>210</td>
<td>0.022</td>
<td>0.043</td>
<td>0.065</td>
<td>0.086</td>
<td>0.108</td>
<td>0.130</td>
<td>0.151</td>
<td>0.173</td>
<td>0.194</td>
<td>0.216</td>
<td>0.238</td>
<td>0.259</td>
<td>0.281</td>
<td>0.302</td>
<td>0.324</td>
</tr>
<tr>
<td>220</td>
<td>0.021</td>
<td>0.041</td>
<td>0.062</td>
<td>0.082</td>
<td>0.103</td>
<td>0.124</td>
<td>0.144</td>
<td>0.165</td>
<td>0.186</td>
<td>0.206</td>
<td>0.227</td>
<td>0.247</td>
<td>0.268</td>
<td>0.289</td>
<td>0.309</td>
</tr>
<tr>
<td>230</td>
<td>0.020</td>
<td>0.039</td>
<td>0.059</td>
<td>0.079</td>
<td>0.099</td>
<td>0.118</td>
<td>0.138</td>
<td>0.158</td>
<td>0.177</td>
<td>0.197</td>
<td>0.217</td>
<td>0.237</td>
<td>0.256</td>
<td>0.276</td>
<td>0.296</td>
</tr>
<tr>
<td>240</td>
<td>0.019</td>
<td>0.038</td>
<td>0.057</td>
<td>0.076</td>
<td>0.094</td>
<td>0.113</td>
<td>0.132</td>
<td>0.151</td>
<td>0.170</td>
<td>0.189</td>
<td>0.208</td>
<td>0.227</td>
<td>0.246</td>
<td>0.265</td>
<td>0.283</td>
</tr>
<tr>
<td>250</td>
<td>0.018</td>
<td>0.036</td>
<td>0.054</td>
<td>0.073</td>
<td>0.091</td>
<td>0.109</td>
<td>0.127</td>
<td>0.145</td>
<td>0.163</td>
<td>0.181</td>
<td>0.200</td>
<td>0.218</td>
<td>0.236</td>
<td>0.254</td>
<td>0.272</td>
</tr>
<tr>
<td>260</td>
<td>0.017</td>
<td>0.035</td>
<td>0.052</td>
<td>0.070</td>
<td>0.087</td>
<td>0.105</td>
<td>0.122</td>
<td>0.140</td>
<td>0.157</td>
<td>0.174</td>
<td>0.192</td>
<td>0.209</td>
<td>0.227</td>
<td>0.244</td>
<td>0.262</td>
</tr>
<tr>
<td>270</td>
<td>0.017</td>
<td>0.034</td>
<td>0.050</td>
<td>0.067</td>
<td>0.084</td>
<td>0.101</td>
<td>0.118</td>
<td>0.134</td>
<td>0.151</td>
<td>0.168</td>
<td>0.185</td>
<td>0.202</td>
<td>0.218</td>
<td>0.235</td>
<td>0.252</td>
</tr>
<tr>
<td>280</td>
<td>0.016</td>
<td>0.032</td>
<td>0.049</td>
<td>0.065</td>
<td>0.081</td>
<td>0.097</td>
<td>0.113</td>
<td>0.130</td>
<td>0.146</td>
<td>0.162</td>
<td>0.178</td>
<td>0.194</td>
<td>0.211</td>
<td>0.227</td>
<td>0.243</td>
</tr>
<tr>
<td>290</td>
<td>0.016</td>
<td>0.031</td>
<td>0.047</td>
<td>0.063</td>
<td>0.078</td>
<td>0.094</td>
<td>0.109</td>
<td>0.125</td>
<td>0.141</td>
<td>0.156</td>
<td>0.172</td>
<td>0.188</td>
<td>0.203</td>
<td>0.219</td>
<td>0.235</td>
</tr>
<tr>
<td>300</td>
<td>0.015</td>
<td>0.030</td>
<td>0.045</td>
<td>0.060</td>
<td>0.076</td>
<td>0.091</td>
<td>0.106</td>
<td>0.121</td>
<td>0.136</td>
<td>0.151</td>
<td>0.166</td>
<td>0.181</td>
<td>0.197</td>
<td>0.212</td>
<td>0.227</td>
</tr>
</tbody>
</table>

This table uses the Widmark formula to calculate a person's maximum alcohol content for a given gender, body weight, and dose of alcohol. It assumes instantaneous and complete absorption of the entire alcohol dose into a person's systemic blood.

Conversely, the table can be used to calculate the minimum amount of alcohol that must be consumed to achieve a given alcohol content.

1All calculations in this table assume a Widmark rho factor of 0.68 L/kg for males and 0.55 L/kg for females. The rho factor represents the percent of a person's body weight due to body water. It can range from about 0.4 L/kg for an obese female to 0.85 L/kg for a muscular male.

2A U.S. standard drink contains 14 g of pure ethanol. This is equivalent to:

- 12 ounces of 5% (v/v) beer
- 5 ounces of 12% (v/v) wine
- 1.5 ounces of 40% (v/v) liquor

For non standard drinks and/or rho factors, maximum alcohol content can be calculated using the Widmark formula as follows:

Maximum alcohol content (g/dL) = \(\frac{100 \times \text{Alcohol dose in grams}}{(\text{body weight in grams} \times \text{Widmark rho factor})} \)

where

- Alcohol dose in grams = (Volume of drinks in ounces) \(\times \) (29.6 mL/oz) \(\times \) (Concentration of alcohol in drink/100) \(\times \) (0.789 g/mL)

and

- body weight in grams = (body weight in pounds) \(\times \) (454 g/lb)
This table uses the Widmark formula to calculate a person’s maximum alcohol content for a given gender, body weight, and dose of alcohol. It assumes instantaneous and complete absorption of the entire alcohol dose into a person’s systemic blood. Conversely, the table can be used to calculate the minimum amount of alcohol that must be consumed to achieve a given alcohol content.

1 All calculations in this table assume a Widmark rho factor of 0.68 L/kg for males and 0.55 L/kg for females. The rho factor represents the percent of a person’s body weight due to body water. It can range from about 0.4 L/kg for an obese female to 0.85 L/kg for a muscular male.

2 A U.S. standard drink contains 14 g of pure ethanol. This is equivalent to:
 - 12 ounces of 5% (v/v) beer
 - 5 ounces of 12% (v/v) wine
 - 1.5 ounces of 40% (v/v) liquor

For non-standard drinks and/or rho factors, maximum alcohol content can be calculated using the Widmark formula as follows:

\[
\text{Maximum alcohol content (g/dL)} = \frac{100 \times \text{Alcohol dose in grams}}{\text{body weight in grams} \times \text{Widmark rho factor}}
\]

where

- \(\text{Alcohol dose in grams} = (\text{Volume of drinks in ounces}) \times (29.6 \text{ mL/oz}) \times (\text{Concentration of alcohol in drink/100}) \times (0.789 \text{ g/mL}) \)

and

- \(\text{body weight in grams} = (\text{body weight in pounds}) \times (454 \text{ g/lb}) \)
Blood Tube Top Colors and their Additives

<table>
<thead>
<tr>
<th>Color</th>
<th>Additives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold</td>
<td>• Clot activator and gel for serum separation</td>
</tr>
<tr>
<td>Light Green</td>
<td>• Lithium heparin and gel for plasma separation</td>
</tr>
<tr>
<td>Red</td>
<td>• Silicone coated (glass) • Clot activator, Silicone coated (plastic)</td>
</tr>
<tr>
<td>Orange</td>
<td>• Thrombin-based clot activator with gel for serum separation</td>
</tr>
<tr>
<td>Orange</td>
<td>• Thrombin-based clot activator</td>
</tr>
<tr>
<td>Royal Blue</td>
<td>• Clot activator (plastic serum) • K$_2$EDTA (plastic)</td>
</tr>
<tr>
<td>Green</td>
<td>• Sodium heparin • Lithium heparin</td>
</tr>
<tr>
<td>Gray</td>
<td>• Potassium oxalate/ sodium fluoride • Sodium fluoride/Na$_2$EDTA • Sodium fluoride (serum tube)</td>
</tr>
<tr>
<td>Tan</td>
<td>• K$_2$EDTA (plastic)</td>
</tr>
</tbody>
</table>
Interpretation of Alcohol Results

Issued: 5/22/2017
Effective: 5/29/2017
Status: Active
Version: IAR 2017 R0

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
</table>
| Yellow | • Sodium polyanethol sulfonate (SPS)
 • Acid citrate dextrose additives (ACD):
 Solution A -
 22.0 g/L tribasic citrate,
 8.0 g/L citric acid,
 24.5 g/L dextrose
 Solution B -
 13.2 g/L trisodium citrate,
 4.8 g/L citric acid,
 14.7 g/L dextrose |
| Lavender | • Liquid K$_2$EDTA (glass)
 • Spray-coated K$_2$EDTA (plastic) |
| White | • K$_2$EDTA and gel for plasma separation |
| Pink | • Spray-coated K$_2$EDTA (plastic) |
| Light Blue| • Buffered sodium citrate
 0.105 M (~3.2%) glass
 0.109 M (3.2%) plastic
 • Citrate, theophylline,
 adenosine, dipyridamole
 (CTAD) |
| Clear | • None (plastic) |

Taken from: BD Diagnostics, BD Vacutainer Venous Blood Collection Tube Guide, 2010
Revision History

<table>
<thead>
<tr>
<th>2017 R0 Page</th>
<th>2016 R0 Page</th>
<th>Location</th>
<th>Revision made</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>All</td>
<td>All</td>
<td>Changed approving authority from Forensic Alcohol Supervisor to Chemistry Supervisor.</td>
</tr>
</tbody>
</table>